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Summary

A persistent problem in prediction studies and decision making prob-
lems is that of weighting the attributes or dimensions of information as-
sumed relevant to the prediction or decision problem. Intuition and past
experience has indicated that the attributes should be differentially weigh-
ted with the more important ones receiving higher weights. Recently, how-
ever, several empirical and theoretical studies have indicated that there
are many situations in which differential weighting may not be necessary
and that simple unit weighting, that is, just adding up the attributes of
information, may be as good as and in some cases better than differential
weighting. The implications of this result, if true, have extraordinary
practical and theoretical significance, and the problem of weighting re-
quires very careful study.

In this report, the first of a series, a method of generating realis-
tic data is described, and illustrations of how the method can be used
to study the usefulness of different data analysis and prediction are given.
The method utilizes a computer simulation which generates an N-by-M data
matrix where N is the number of observations and M is the number of vari-
ables or measurements taken on each observation. For example, N could be 15
automobiles being considered for possible purchase, and M could be 10 per-
formance and/or quality factors of importance for each of the automobiles.
The entries in the data matrix would be simulated measurement values for
each factor on each automobile. The method also allows for the simulation
of various types of error in the assigned values. The computer program to
accomplish this is outlined. Two examples of the use of the method are
given. One compares the familiar multiple regression model with simple
unit weighting in a prediction problem to predict a well defined criterion
variable from a set of predictor variables. The regression model estimates
the weights to be assigned to each predictor whereas the unit weighting
model merely adds up the predictors and thus does not assign differential
weights. The results indicate that multiple regression is superior to
unit weighting for prediction purposes, but the differences between the two
models are not substantial. The second example compares several ways of
forming weighted and unweighted combinations of attributes of dimensions
of importance to help persons make practical decisions. Some of the con-
ditions under which differential weighting is important for practical deci-
sion making are specified. The conditions under which differential
weighting is not important are also specified.
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Unit Versus Differential W1eighting Schemes for
Decision Making: A Method of Study and Some Preliminary Results -h

Introduction

A persistent and pervasive problem in decision making research and tech-
nology is how to combine presumably relevant information into a composite and
then use that composite in making a decision.

In this Daper we describe a method to study one aspect of this general
problem: h'-w to weight information in forming the composite. With this
method, we can explore various differential weighting schemes and for each
such scheme a comparison can be made with the simplest possible scheme, A
namely, just adding the variables or "unit weighting." There is an accumu-
lating body of evidence indicating that such unit weighting may be as good
and in some places, "better" than more complicated differential weighting
schemes such as multiple regression. This evidence has a theoretical and
analytic underpinning as provided by the work of Wilks (1938), Gulliksen
(V 9, %Ch. 20), and more recently Einhorn and Hogarth (1975), Wainer (1976),
Wainer and Thissen (1976) and Green (1974). There have,•also been several
empi ical studies as represented by the works of Lawshe and Shucker (1959),
Weszan and Bennett (1959), and Fischer (1972). There have been at least three
computer simulation studies (Schmidt, 1971, 1972; Claudy, 1972), and the ap- AM
proach we take is similar to such simulations. In an important review and
anrlysis, Dawes and Corrigan (1974) argue cogently that simple additive (Lmit
weighting) models are quite appropriate and indeed desirable in many decision
making situations.

ine implications of these results have extraordinary theoretical and
practical significance. Our own interest is in the area of hummi decision
making where the problem facing the decision maker is to choose an action2. alternative from a set of competing alternatives. The choice is difficult
in most practical situations because there are often many attributes or
dimensions of importance relevant to the choices available, and these at-

Stributes are often in conflict and vary in degree of apparent importance.
In several places, Edwards and his associates (Edwards, 1971; Edwards and
Guttentag, 1975; Edwards, Guttentag, and Snapper, 1975; Gardiner and Edwards,
1975) have proposed a multi-attribute utility measurement scheme which is
very simple to apply in a wide variety of practical decision making contexts.
The method involves simple ranking of the attributes and the attachment of
importance weights to the attributes by using a modification of ratio scaling.
Single attribute utilities are then measured, multiplied by the importance
weight of the attribute and summed across attributes to yield an overall
utility. Edwards offered this technique as a replacement for the more in-
tricate and complex models advocated by mathematically-oriented decision
theorists, such as Raiffa (1968), and Keeney and Raiffa (1976). If unit
weighting is equal to or superior to such weighting, then perhaps the Edwards
approach should adopt unit weighting and things would become even simpler for
the practical decision maker. The entire practice of applied differential
psychology as exemplified by Anastasi (1958) and econometrics (Johnson, 1972),
just to mention two other important areas, will also become simpler if we can
specify the conditions in which unit weighting is appropriate. This is the
first of a series of reports to help specify those conditions.



Method

The method proposed is a Monte Car'o simulation of a multivariate pro-
cess. The simulation generates a randLa variable vector X = (x1 , x2 , ... , xM)
from N (0, Z) the multivariate normal distribution with mean zero and variance-
covariance matrix:

= ID

The computational procedure for this method is provided by Scheuer and
Stoller (1962) which is based on a theorem given in Anderson (1958, p. 19ff).
Let Y be a normally distributed random vector with N(O, I) where I is the
unit matrix of size M. Anderson demonstrates that there i3 a matrix C with
elements cij such that if X = CY, then X = (xl, x2, ... , xn) is distributed

as N (0, CC'), where C' is the transpose of C. The solution to finding C
is familiar to psychologists as the "square-root" or "pivot" method of factor
analysis and is described in Fruchter (1954) and Harmon (1967). The "square-
root" method decomposes the original variance-covariance matrix E into a lower
triangular factor matrix C such that CC' = Z. Once the elements c.. of C
have been determined, then the column vector X is obtained from: J

X= cy (1)

where Y is a column vector containing elements yly ,  y ""' yN which are stan-
dardized normal variates, i.e., with zero mean and unit variance. This method
can be repeated for any number (N) times and is readily adopted for high speed
computation. The end result is to produce an N X M data matrix with N rows
depicting observations, for example subjects or choice alternatives, and M
columns depicting measurements such as experimental conditions, psychological
tests, or attributes. The elements of the data matrix represent a random
sample from a multivariate normal population and thus simulate a "score" for
each observation on each of the variables. In order to illustrate and further
clarify this method, we will outline the steps of a computer program written
to accomplish the above description.

RN Step 1. An "input" standardized variance-covariance matrix is defined
such as that given in Table 1 which presents the intercorrelations between
four variables.

The ntwbers in Table 1 are taken from a study by Sloan and Newman (1955).
The first three variables are sub-tests of the Wechsler Intelligence Scale
for Children (WISC); the fourth variable is the full-scale weighted score (FSWS),
based on all ten sub-tests of the WISC. The investigators were interested in
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Table 1

Eapeof a Correlation Matrix

Used as an~ Input to the Simulation

Variable

1 2 3 4

2 .50 1

3 .43 .45 1

4 .47 .81 .74 1

-3



developing a short form of the test and variables 1-3 represent the best I
combination of sub-tests to predict variable 4 (FSWS). Use of the correla-
tion matrix rather than the variance-covariance matrix does not restrict I
generality and simplifies the computations.

Step 2. The variance-covariance matrix is decomposed by using the
square-root method to yield a new matrix C such that CC' = the input matrix.
Before proceeding to Step 3, a check is made to see whether this identity
holds. For example, if Table 1 is decomposed, we make sure the original
table can be reproduced before proceeding.

Step 3. For each member of a given sample size of N observations, a
sample of M standardized normal deviates are selected from the univariate
normal distribution with zero mean and unit variance, where M stands for the
number of variables. For example, with Table 1, M = 4 and if the sample size
N was equal to 25, the result of this step yields 25 vectors, each containing
4 standardized normal variates. Each of these is treated as a column vector
which is pre-multiplied by the matrix C obtained in Step 2. The result is

the NxM data matrix. As an illustration of the end result of this step,
Table 2 presents the summary statistics (means and standard deviations) forV
a particular data matrix based on a sample size 25 created from the input AS
matrix represented by Table 1. Table 3 depicts the sample intercorrelations
between the four variables.

Note that in Table 2 the means and standard deviations are not quite
zero and one, respectively. This is due to sampling fluctuations. Sampling
variability also accounts for the fact that the sample intercorrelations pre-
sented in Table 3 are not alwais equal to the input intercorrelations depicted
in Table 1 which formed the basis for the sample. Of course, as the sample O
size is increased, sampling errors will decrease and the calculated sample M

statistics will be closer to their true values.

Step 4. The data matrices generated in Step 3 contain sampling error due
to the sampling process but are free of measurement error. To make this simula-
tion more realistic, Step 4 adds probabilistic noise to any one or all of the
variables. This is accomplished by random sampling either from the uniformprobability distribution defined over some interval (a,b) or from the normal_-

probability distribution with parameters (O,a). This step simulates measure-
ment error, and this error can be added to just one, say, the dependent varia-
bles, or to any subset of variables in the generated data matrix.

Brief Comment on Rationale.

Before giving examples of how this data-generating method can be used,
we would like to comment briefly on two issues that formed the basis for de-
veloping the method. These can be stated as questions. The first is: why
choose the multi-variate normal probability distribution as the basis for
generating data? Our answer is that this distribution has very nice pro-
perties. Each of the marginal and conditional probability distributions is:;?•_• also normal. Thus we can alter any of the generated frequency distributions
by knowledge of the properties of the normal distribution. For example, sup-

pose we wanted to create a positively skewed distribution on one of the mar-

-4-



Table 2

Means and Standard Deviations for the Computer-

Generated Data Matrix Consisting of

25 Observations on Each of Four Variables

Variable

1 2 3 4

Mean .001 .080 -. 128 .05

S.D. 1.256 .955 1.196 1.081

-5- p7



Table 3

Samiple Intercorrelations for the Comiputer-

Generated Data Matrix Consisting of
25 Observations on Each of Four Variables

Variable

1 2 3 4

!1

2 .73

3 .57 .50

4 .69 .81 .81

lipl

[1

Table

Sampe Inercrreltion fo theCompterV teaedDt.'ti Cnitigo
25 bsrvtinsonEac o FurV-6ale



<1i
ginal distributions. This could be accomplished by stating what proportion
of the cases should be to the right of a certain standard score. As the
numbers are generated, if they are at or exceed this standard score value,
then a positive constant or a randomly selected positive value could be add-
ed to such numbers. As another example, suppose we wanted approximately
2% - 2.5% of the generated numbers to be "outliers," that is, to lie out-
side an expected range. This could be accomplished by specifying that if
a generated number fell at or beyond 2 plus or minus standard score units,
then an appropriate constant, or a randomly selected constant, is added
to that number. We cannot think of any type of realistic (or, for that
matter, unrealistic) data that cannot be simulated by this method. Unfor-
tunately, we do not have any convenient theoretical or empirical reason,
except that provided by previous studies, to enable us to state what kind
of data would be of interest to generate.

The second question is: how does the method lend itself to the case
where there are no well-defined independent (predictor) or dependent (cri-
terion) variables? Actually, this is the case of most interest to us since
many applied decision problems are of this kind. Perhaps the best way to
answer this question is to give a concrete example. Suppose a large police
department is faced with the problem of selecting a new motor vehicle to
serve as the official patrol car in the city for the next three years. You
are faced with the responsibility for guidance in selecting the "best" vehi-
cle.

The attributes or dimensions of importance for any set of competing motor
vehicles might be such things as performance, expense, safety, reliability, and
vehicle comfort. Each of these might have sub-dimensions. For example, per-
formance would i•e.st certainly include acceleration speeO, and top speed in
this context. Any subset of these dimensions may be correlated or uncorre-
lated. (One way to estimate what these correlations might be would be to
take the rat lngs on a large number of motor vehicles given by the magazine
Consumer Reports on each of the dimensions mentioned above and obtain an in-
tercorrelation matrix from these ratings.) As soon as these correlations are•. ~specified, then data which would represent a vector of the numerical values

on each of the dimensions for each candidate vehicle can be generated. Var-
ious rank orderings of the dimensions on a scale of importance could also beii simulated. In practice, this ordering and attachment of importance weights
are done by experts concerned about the final decision. Also, these same
experts might well have different preferences or utilities of how each can-
didate motor vehicle rates on each of the importance dimensions. These util-
ity measurement numbers can also be simulated by this method. We now have
two sets of numbers, the importance weights of the dimensions and the utilityS .measurement of each candidate vehicle on the dimensions. Various ways of
forming composites and aggregating these two numbers, including that of just
unit weighting, for example, adding up each vehicle's score or each dimension
and choosing that vehicle with the highest sum, can now be specified and com-@_ ! ~pared. -

We now turn to two applications of the data generating method described
above. The first concerns a straightforward prediction problem typical of A
that found in many disciplines. The second focuses on various ways of ag-I i -gregating information in a decision analysis situation.

-7-SI• -7- •t



Simulation 1

in In this study, we compared the familiar multiple regression model applied
to a well-defined prediction problem, with the simplest model possible; for
example, unit weighting. By a well-defined p. .iction problem, we mean one
in which there is a criterion variable and several predictor variables, which
are correlated with that criterion as expressed by validity coefficients. The
predictor variables are correlated with each other as well. One reason for
studying this problem first is that it is probably the most common problem in
applied psychology and other fields. Correlation matrices of the type depicted
in Table 1 abound in psychology. The three validity coefficients are moderate
to moderately high, and the intercorrelation between the three predictor var-
iables are moderate. The multiple regression model is the most recommended to
apply to such matrices for the purposes of obtaining the optimal prediction of
the criterion.

A second reason for this study is that the regression model is the one
that has been most frequently compared with unit weighting in the literature,
and previous investigators have often reported that unit weighting outperformed
the regression model. This is such an important finding that we wanted to
study it carefully. Incidentally, we purposely chose a prediction problem
the characteristics of which would lo-ad one to expect the regression model
to do very well when compared to unit weighting. The correlations in Table
1, which will be the input to the data generating procedures, are all posi-
tive. There are only three predictor variables and the validity coefficients
and predictor intercorrelations are all positive. If there were no sampling
or measurement error, then it would be possible to calculate the true stan-
dardized regression coefficients and these would be quite different from one
another and will be presented later in this paper. Also, the generated data
are all sampled from a multivariate normal distribution and there was little
chance for any "outliers" to appear in the data.

Data Matrices.

Using as input the standaridzed variance-covariance (correlation) matrix
Sjgiven in Table 1, a set of NxM data matrices were generated where N is the

sample size and M = 4, in this case, is the number of variables. Variable 4 A
was designed as the criterion or dependent variable. The sample size N took
on four values, 25, 50, 75, and 100. After each matrix was generated, it was
"copied" into a second matrix and random noise (measurement error) was added
to either one, two, three, or four variables. The error was sampled from
the uniform probability distribution defined over the unit interval (0,1).
Thus, for each run, a data matrix was generated that was free of measurement AO
error for each of the sample sizes, and this matrix was then contaminated
with measurement error in from one to four of the variables. In one set,
error was added only to the criterion variable. In other sets, error was
added to one or more of the independent or predictor variables up to 3, but
not to the criterion; finally, error was added to all four variables. Thus,
there were 24 types of datv matrices to be used in comparing the models de-
scribed in the next section. For each type, 100 data matrices were sampled
to form the basis of model comparison.

;-8-



The Models and the Basis for Comparison.

The two models to be compared were simple unit weighting and multiple
regression. The first, of course, is formed by simply summing the first
three independent variables (1-3). This was added as variable 5 to each
data matrix. The second one was generated by the familiar least squares
estimates for the regression coefficients, and this formed variable 6 for
each data matrix. Incidentally, before each model was formed, all data
values for all four original variables were standardized. The squared
multiple correlation coefficient (R2 ) was calculated between variable 4
(criterion) and variable 5 (unit weighting prediction of criteria) and be-
tween variable 4 and variable 6 (multiple regression prediction of the
criterion). In comparing the two models, we followed the scheme used by
Einhom and Hogarth (1975) in their analytic study of the efficacy of unit
weighting. The expected mean squared errors of the regression and unit
weighting models respectively are given by two well-known formulas:

n 2
E(MSER) e / DFR = N-k-l (2)

E
i=l

n 2
where E e. is the sum of the squared residuals of the regression model; and

i=l1
, ~n2

E(MSEU) = E u. / DFU = N-2
i=11  (3)

n 2
where Z u. is the sum of the squared residuals from the equal weighting

i=l 1

model. The denominators DFR and DFJ of (2) and (3) are the degrees of free-
dom for the respective models. For the regression model (2), k plus 1 degrees
of freedom are lost for the k regression coefficients and the additive con-
stant that must be estimated from the data. For the unit weighting model
(3), the degrees of freedom are actually that for the equal weighting model
where all the regression coefficients of (2) are set equal to some constant.
Thus, there are only two values, the one regression coefficient and the addi-
tive constant, that need to be estimated from the data. Strictly speaking,
there are no degrees of freedom lost for the unit weighting model since noth-
ing is estimated from the data. However, as Einhorn and Hogarth point out,
the unit weighting model will correlate perfectly (1.0) with the equal weight-
ing model and, thus, equation (3) allows us to use standard statistical theory
in comparing the two prediction models.

The relative predictive efficiency of the two models may be assessed by
comparing the ratios of their mean squared errors:

Ne2
(N-2) E e

E(MSER) : i=l 1  (4)

E (NSEU) N 2
(N-k-l) E u.
9 i=1-



which, since the criterion variable is the same in both models and 1-R 2

equals the sum of the squared residuals in (4), is re-expressed in the con-venient form: .

E(MSER)_ (N-2) (1-Rý)

E(MSEU) (N-k-I) (1-R 2 )
r

where R2 and R2 are the squared multiple correlations using the regression
r u

and unit weighting models, respectively. When the ratio in (5) is less than
one, the regression model performs more accurately than unit weighting. When
the ratio is greater than one, unit weighting will perform better than the
regression model. For k > 2, the ratio (N-2) / (N-k-l) of (5) will always be
greater than one and thus-favor the unit model. The ratio (1-R2) / (- of

(5), however, will always be less than or equal to one on initial fit thus
favoring the regression model. For this reason, (5) was used to compare the
two models on cross-validated regression models. This cross validation was
accomplished sequentially in the sampling process; that is, the coefficients
estimated in sample 1 were used to predict the actual values in sample 2;
those estimated in sample 2 were used to predict the values in sample 3, and

so on.

Results.

Table 4 presents the percentage of times the regression model outperformed
the unit weighting model according to the criterion provided by (5), for the
four sample sizes and the number of variables with measurement error. Note
that except for the case of the smallest sample size (N=25), the regression
model almost always does better than the unit weighting model. With N=25,
the regression model goes from a better performance percentage of 92 down
to 69 as the number of variables infested with measurement error increases
from 0 to 4. For small sample sizes, the initial estimates of the regres-
sion coefficients can be quite unstable and often do not hold up well under
cross validation especially when the number of variables with measurement
error increases. Thus, while on a percentage of better performance basisA the regression model appears superior to unit weighting, the use of the model
under these conditions is questionable, a familiar finding.

The results in Table 4 would seem to indicate that the regression model
should be preferred over unit weighting for sample sizes of 50 or more, at
least for the type of data matrices studies here. However, consider Table 5,
which presents the expected mean squared error for the two models for the
various sample sizes and the number of variables that have measurement error.
Each value in Table 5 represents an average of 100 samples and can be con-
sidered very stable.

The results in Table 5 indicate that while the regression model is in
all cases superior to unit weighting, the difference between them is not
all that dramatic, the regression model reducing the absolute error some-
where between 7 and 13 percent in comparison to unit weighting.

-10-



Table 4

Percentage of Times Regression Model Outperforms

Unit Weighting Model for Various Sample

Sizes and Number of Variables with Measurement Error

Number of Variables with
Measurement Error

Sample
Size 0 l(c) 1 2 3 4

25 92 82 91 85 75 69

50 98 94 96 96 95 92

75 99 98 99 99 98 96

100 99 99 99 98 99 98

Note: Each percentage is based on 100 replica-
tions of each sample size.

aerror added to the criterion variable only.

4-11



Discussion.

These results are in general agreement with those reported by Einhorn
and Hogarth (1975), Schmidt (1971) and Claudy (1972). These investigators
fou;nd regression weights to be superior to unit weights for sample sizes
of 50 or greater, and our simulation supports this finding. For small sam-
ple sizes (e.g., N < 25), none of the above investigators recommend the use
of regression weights over unit weights. We concur, although our results
are not as pessimistic; that is, the regression weights do show a superiority
on the average, but this advantage dissipates rapidly when measurement error
is added to the variables, and we would have to conclude that the estimation
of regression weights is not worth the effort for small sample sizes.

The most striking feature of our results, however, is that while re-
gression i:;ights may be superior to unit weights, in many situations the
superiority is certainly not very great. It should be remembered that we
purposely chose a type of situation in which one might expect a priori the
regression model to do quite well; that is, the sample was from a multivariate
normal population, the validity coefficients between the predictor and cri-
terion variables were moderately strong, and the intercorrelations between
the predictors were moderate. There were only three predictors, and all pre-
vious findings have shown that with few predictors, regression models are
often superior to unit weighting models, but this advantage disappears as
the number of predictors increases. Also, the input correlation matrix given
in Table 1 actually presents the true population correlations for the data-
generating model. Sampling and measurement error omitted, the true standar-
dized regression weights for the three predictor variables in this study are:
-. 0452, .6155, and .4825 respectively. Assigning unit weights would seem to
be ridiculously high and result in considerable error. Even when conditions
are quite favorable to the regression model, however, our results show that
this advantage is never greater than 13% in absolute value comparison between
the two models. In light of the complexity of the regression model, as con-
trasted to the unit weighting model, this is hardly a command performance.

Of course, in terms of relative improvement, the regression model does
look quite good compared to the unit model. If one forms the ratio: E(MSER)/
E(MSEU) of the values given in Table 5, then the relative improvement of the
regression model over the unit model goes from a low of 21% to a high of
67%, depending on what condition is considered. There are many practical
situations in which such relative improvement could have a high "payoff."

Our results do not agree with those of Dawes and Corrigan (1974) or
Wainer (1976), who reported that unit weighting was actually superior to

regression weights. The explanation of this lies in the way the regression
coefficients are estimated in the initial sample. If they are poorly es-
timated, they will not hold up well on a validating sample, and equal weights

4 will be as good or superior. The conditions under which regression weights
X will be wrongly estimated in the initial sample are: (a) very small sample
-•size relative to the number of predictors; (b) a large number of predictors;

• •(c) the presence of "outliers" which are outside the expected range of sample
values; (d) non-normality in the original sample. Equal or unit weights are
insensitive to all such conditions and thus will often be superior to regres-

-- 7r!-12-
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Table 5

Expected Mean Squared Error [E(MSE)] for the Two Models for
Various Sample Sizes and Number of Variables with Measurement Error

N

25 s0 75 100

No. of
Variables

With Error E(MSEU) EWMSER) E(MSEIU) E(MSER) E(MSEU) E(MSER) E(MSEU) E(`MSER)

0 .30 .20 .30 .19 .32 .20 .29 .18
a

l(c) .35 .26 .36 .26 .36 .26 .35 .24

1 .30 .19 .31 .19 .33 .20 .30 .18

2 .31 .23 .32 .23 .32 .22 .32 .21

3 .35 .27 .34 .24 .33 .23 .33 .23

4 .40 .33 .37 .29 .38 .29 .37 .29

+t

a
error in the criterion variable only.
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sion weights when such conditions exist in the initial sample. By design,

none of these conditions existed in our data-generating process. Thus when
conditions are "just right" for the regres'ion model, that model will behave
as the statistical theory says it should bL .ave. Howevec, in practical situa-
tions, one cannot expect everything to be "just right," and any investigator
should be very cautious in applying the regression model when the conditions
for the model are not "just right."

It should be pointed out that there are ways to improve the estimation
of regression weights in the initial sample. Mosteller and Tukey (1968) have
described the "jackknife" procedure; Hoerl (1964) recommends ridge estimation
of regression coefficients; and Lindley and Smith (1972) describe a Bayesian
procedure to regression and demonstrate its superiority to conventinal regres-
sion estimation. Wainer and Thissen (1976) recommend smoothing the initial
estimates, especially when there is a theoretical structure for the regres-
sion coefficients.

We intend to explore such techniques and compare them with unit weighting
in subsequent studies.

PI
Simulation2 2]

Our second simulation focuses on a common problem in multi-attribute de-
cision analysis situations. This problem has two parts: how to assign im-
portance weights to the attributes considered relevant to the choice alterna-
tives and how to aggregate or combine these weighted attributes into a com-
posite to aid in the final decision. The choict. of attributes to be included
and the assignment of the importance weight to each attribute is usually done
by expert human judgment. Unlike the problem studied in the previous section,
there is no clear-cut dependent or criterion variable to which the attributes
may be related, and thus we are not trying to predict any criterion from know-
ledge of the attributes. Also, there is no clear cut theory such as a least
squares regression model which stipulates how the weighted attributes are to
be combined or aggregated. For example, consider the decision problem alluded
to earlier, that of trying to decide which of many automobiles available shouldbe chosen as the "official car." Some of the attributes considered important

in making this decision might be such things as fuel economy, small exterior
size, large interior size, passing/acceleration ability, low interior noise,
ride quality, cost, and the like. These characteristics interact and trade-

J economy, it might be necessary to sacrifice acceleration. This could be ac-

complished by considering lighter cars, but these, in turn, could adversely
affect ride quality, interior size, and so forth. These interactions are -

W reflected in both positive and negative correlations between the attributes.
In addition, we must consider that in many choice situations we would expect
the average intercorrelation among the attributes of alternatives being ac-
tively considered to be negative.

To explain this, consider choices among alternatives that have two rele-
vant attributes, a1 and a2. Figure 1 illustrates the possible values of a1
and a2 that the choice alternatives might assume, with each attribute oriented

_ 
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I
so more is better. Each point represents a single choice alternative with I
its two-dimensional values. In situations where a single alternative is to
be chosen, any rational decision maker should consider only alternatives
that are not dominated. In the two-attribute case, this means that the
decision maker would not consider any alternative for which there is another
alternative that is at least as good on both attributes and better on one.
In Figure 1 only alternatives on the northeast boundary would be considered.
Thus, for all alternatives being considered, being better on one dinension
must mean being worse on the other. This leads to a negative correlation
between the attributes. In the two-attribute case, this negative correlation
could be as high as -1.0. Obviously, as the number of attributes increases.
the lower bound on the average intercorrelation increases. In the particular
situation where all intercorrelations are assumed equal, the lower bound is
-I/(k-l). i the case where multiple alternatives are to be chosen, the
situation is slightly more complicated. If j alternatives are to be chosen,
with j > 1, an alternative must be dominated by at least j other alternatives
to be eliminated from consideration. Thus, it appears that in most multi-
attribute choice situations there are likely to be negative inter-attribute
correlations, a circumstance not previously investigated in comparing unit
and differentially weighted models.

The second reason for extending this analysis is that in the multi-at-
tribute choice situation, the combination rule for aggregating the single
attribute utilities is not always strictly an additive rule. When the single
attribute utilities are cnrTbined additively, the model becomes ',athematically
similar to the regression model. However, interaction terms are often called
for in the multi-attribute utility combination rule. Thus, a general formula
for the total utility U. of any alternative j could be:J

U. w wui(aij + f(u (a j),u (a j),...,uk(ak) (6)

where ui(aij) is the utility assigned to alternative j on attribute i, the

wI's are importance weights, and f is a general term to be used in forming
ii
Sproduct terms. If no interactions are needed in this model, the f term

Svanishes, and the model becomes simple additive. If such additivity can be
expected to hold for the case of positive correlation between the attributes,
we know what to expect if we use (6) as the basis for making a final decision.
Just about any version of (6) is as good as any other. Thus, if you set

i j, f(u(aij))=O and the w.=l for all i, you have the unit weighting model which

should perform as well as any other version of (6). Since this version is
the simplest, any rational decision maker should certainly adopt it. The
analytic proof of this rule is due to Wilks (1938), who demonstrated under
reasonable conditions that the average value of the correlation between any
two linear combination of attributes differs from unity by terms of order 4
I/k and the variance of the correlation is of order 1/k2, where k is the num-
ber of attributes. The larger the mean value of positive correlation between
pairs of attributes, the more rapidly the mean value of the correlation be-
tween linear combinations approaches 1.

Because of the complexity the combination rule for U. can assume due to

-16-



the flexibility of the f term, we have restricted this particular simula-
tion to the simplest possible case, the two-attribute case. For this study
the correlation between the two attributes was also restricted at moderately
high positive (.8) and moderately high negative (-.8).

Assuming that ui(aij) = aij for all i which does not restrict our results

since this can occur either by assuming u 's are linear or the ai.'s are al-
ready measures of utility, we studied three versions of equation (6):

Model1=U =Wa +wa +walaa2

12 llj w2a2j

Model 3 U 3 alj a 2j .
The three weights wi, i= 1,2,3, were allowed to vary in increments of .1 on

W the weight assigned to attribute 1 under the following schema:

wV
2 1

w (1- wI w2.

Thus, for model 1, which has a cross-product term, the first pass through k
attribute 1 received a weight of .3 , attribute 2 a weight of .2 and the pro-
duct attribute 2 a weight of .3 and the product term a weight of .5. Since po
the weights were constrained to sum to one, the last pass-through gave a weight
of .5 to attributes 1 and 2, respectively and a 0 weight to the product term.

For model 2, the first pass through attribute 2 received twice the weight V
of attribute 1, the second time the weights assigned to attributes I and 2
were .2 and .3, respectively, and the final pass resulted in equal weights
(.50) being assigned to the two attributes. (There was no w3 for this model.)

Model 3, of course, is sinmle unit weighting. All three models are identical
when models 1 and 2 are in the equal weighting version.

Data Generation and Analysis.

Tlhe data generation was similar to that described in the previous section.
The input "matrix," however, was the simplest possible, consisting either of a
.8, or -. 8 correlation between the two attributes. With either input, we chose

j to generate two sample sizes (N) of data. 25 and 50. Thus the output of the
data generation process was a NX2 table of numbers with each row of the table
representing a utility on each of the two attributes.

The three aggregation models were then formed and the correlation between
each of the models obtained. Thus, the cor:elation coefficient between the
models is the dependent variable and was used to form the basis for assessing

Lj 4 -17-
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the similarity or dissimilarity of the models. To wake the analysis somewhat
akin to that presented in the previous section, we uz;ed l-ri2 the non-over-

lapping or error varianye, as the basic measure to comipare the dissimilarity
of the models where r.. is the square of the correlation coefficient between13
model i and j. The larger this expression, the more dissimilar the models are.
Each correlation coefficient was based on either 2S ..,r 50 sample values, and
we repeated each sample size 50 times; thus, the results of the model compari-
son can be based on an average of 50 repetitions. Also, as in the previous
simulation, we considered 3 conditions of measurement error: none, measure-
ment error added to one attribute, and measurement error added to both attri-
butes.

Before presenting the results we would like to clarify in specific terms j
just what the simulation consisted of. Consider the (!-cision problem of trying
to decide which automobile would be the best choice, and only two attributes
influence the decision: fuel economy and small exterior size. These attributes
could be scaled to correlate positively. Other things being equal, the smaller
the exterior size of a car the less fuel it consumes. If now the sample size
is 25, then the data generation program generates a numerical utility for each
of 25 competing automobiles on each of the two attributes. The three models
are then formed for each of these 25 cars. If this were a real decision prob-
lem, then the car that has the highest composite utility for whatever model
is being used, would be chosen. We then compared the similarity-dissimilarity
of the three models by repcating the entire simulation SO times and calculat-
ing the correlations between the three models each time. For the case of nega-
tive correlation between the attributes, then, the two attributes considered
relevant might be fuel economy and large interior size. These can be expected
to be negatively correlated in practice. For this case we performed the entire
simulation again.

Results.

Tables 6 and 7 present the mean square error (MSE) between the three mod-
els for the various weighting schemes and the number of attributes with measure-
ment error. Table 6 is for the sample size being equal to 25, and Table 7 is
for the sample size 50. The numbers outside the parentheses are the mean
square error for the positively correlated attributes, and the values inside AA
the parentheses are the mean square error when the attributes were negatively
correlated. Because there is very little difference between Tables 6 and 7,
indicating that sample size does not influence the main results, we will fo-
cus our discussion around Table 6. Note that the iean square error between
model 2 (differential weighting) and model 3 (equal weighting), labeled 1,E23, 4
is in all cases about 0 indicating almost perfect similarity between unit and
differential weighting when the attributes are positively correlated. This was I
the expected finding. With negative correlation between the attributes, as in-
dicated by the MSE23 within the parentheses, there is dissimilarity between the

Stwo models, and this dissimilarity is greatest for the case of the weights being
most dissimilar. As the weights get closer topether in relative size, the mod-
els become more similar. It is somewhat instruttive to compare the sunmary
statistics on the correlation coefficients, for the -. 8 attribute intercorrela-
tion case, calculated between models 2 and 3 for the 50 repetitions of the sim-

• ~-18- I
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ulation. Some of these are presented in Table 8, for the condition of no
measurement error in the attributes, and Table 9 for the condition of measure-
ment error added to both utilities.

Note in Table 8 when attribute 1 receives twice the weight of attribute
2, the mean correlation between the two models is .71, and there is a wide
range in the computed correlations going from a low of .32 to a high of
about .9. There is a slight tendency for the adding of measurement error to
change things, but, for all practical purposes, adding error does not seem
to change the results much. (Table 9). Tables 8 and 9 also indicate that
as the differential weights become more similar, as indicated by part (b)
and (c) of the tables, then the similarity between the two models becomes
greater (Mean = .95), and the range of calculated values is reduced sub-
stantially.

Now consider the mean square error comparing model 1 (weighted with a
cross product term) and model 3 (unit weighting), labeled as MSE13 in Table
6 and 7. Here we see that there are substantial differences between the
models for both positively and negatively correlated attributes. The inclu-
sion of a product term in model 1, which in turn gets a high weight relative
to the other terms, gives quite different results than simple unit weighting.
For the case of positively correlated attributes, this dissimilarity is di-
minished as the differential weights become more alike and is virtually elim-
inated when the weights assigned to the attributes are almost alike (.4, .5)
and the cross product term gets a low relative weight (.1). For the case of
negatively correlated attributes, while the similarity between the models
increases as the weights become more alike, there remains a substantial dis-
similarity between the models. Incidentally, unlike the comparison between
models 2 and 3 (MSE23), adding measurement error to the utilities on the at-
tributes does make a difference in comparing models 1 and 3 (MSEI3). Adding
error seems to make the models more similar, as indicated by decreases in
the mean square error.

To further clarify this finding, we present the summary statistics for
the calculated correlation coefficients, for the most extreme and least ex-
treme differential weights; Table 10 presents these for the case of no meas-
urement error and Table 11 for the case of measurement error added to both
utilities. Table 10 indicates that when the differential weights are extreme,
with the product term of model I receiving a large relative weight, the average
correlation between this model and model 3 (unit weight) is quite small, es-
pecially for the case of negative correlation between the attributes, and the
range of the calculated coefficients is quite wide. When the weights for at-
tributes are closer to being equal (.4, .5), and the product term receives
a low relative weight, then the difference between the two models is virtually
eliminated for the positively correlated attributes but is maintained for the -A

negatively correlated attributes. Table 11 indicates that when measurement 4
error is added to the attributes, then the differences between the two models
are not as great. A

These results clearly indicate that a model that includes a cross-prod-
uct term as the weighted utility composite (such as model 1 of this simula-
tion) will yield substantially different results from a simple unit weighting
model, especially when the product term receives a relatively high weight.

-21-
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Table 8

Sumary Statistics for the Correlation Coefficient
between Model 2 (Differential Weights)

and Model 3 (Unit Weights)

(a) (b) (c)
Wl=.2, w2=. I wl=.4, w2 .5 wl=.5, w2=.

Mean .71 .95 .96

Std. .12 .02 .02
Dev.

Min. .32 .90 .92

Max. .89 .99 .99

Range .57 .09 .07

Note. N=50 for each condition. No measurement error.

Id

*1 -
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Table 9

Summary Statistics for the Correlation Coefficient
between Model 2 (Differential Weights)

and Model 3 (Unit Weights)

(a) (b) (c)
Wl1.2, w'2=. Wl=.4, W2=.5 wl=.5, w2=.5

Mean .75 .95 .97

Std.
Dev. .10 .02 .01

Min. .40 .89 .93

Max. .91 .98 .99

Range .51 .09 .06

Note. N=50 for each condition. Measurement error added to both attributes.
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When the attributes are positively correlated, this difference will dis-
appear when all the main terms receive similar weights and the product term
receives considerably less relative weight. However, for the case of nega-
tively correlated attributes, the differences between the two models are never
eliminated. The practical implication of this finding is that when this con-
dition holds, and for the type of decision problem considered (for example,
selection of the "best automobile), the final selection could be quite dif-
ferent, depending upon what model was being used.

Tables 6 and 7 also compare the mean square error between model 1 and
2 (MSEI2), but the results are virtually the same as those just discussed
for models 1 and 3 and will not be repeated.

Discussion

We will confine our discussion to the case of negatively correlated at-
tributes, since, if the attributes are positively correlated, we know that
differential weighting is not necessary if additivity holds.iI

For the simple case of just two attributes that are negatively correlated,
then, differential weighting does make a difference, and in practical situa-
tions this difference can be very important. This results is in line with a
more realistic study, which investigated the case of a mixture of positive
and negative intercorrelations among eleven attributes (Newman, 1976). Of
course, negative correlations can often be and should be changed in sign by
rescaling the measured attributes. However, the Newman paper demonstrates
that even when all the attributes are oriented in the "right" direction, the
negative intercorrelations can still appear; and this condition can result
in differential weighting affecting what the final choice in a decision sit-
uation might be.

This raises the intriguing question of just what weighting scheme should
be used since the choice can critically affect the final decision. We have
no answer to this question and, indeed, there may not be one. There is a
strong need to develop a theoretical rationale for differential weighting
when the attributes of importance are a mixture of positive and negative in-
tercorrelations. We are pursuing this problem theoretically, but for the
time being, we will continue with empirical studies.

-26-
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